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ABSTRACT

To prepare for the next-generation North American Land Data Assimilation System (NLDAS), three

advanced land surface models [LSMs; i.e., Community Land Model, version 4.0 (CLM4.0); Noah LSM with

multiphysics options (Noah-MP); andCatchment LSM-Fortuna 2.5 (CLSM-F2.5)] were run for the 1979–2014

period within the NLDAS-based framework. Unlike the LSMs currently executing in the operational

NLDAS, these three advanced LSMs each include a groundwater component. In this study, the model

simulations of monthly terrestrial water storage anomaly (TWSA) and its individual water storage compo-

nents are evaluated against satellite-based and in situ observations, as well as against reference reanalysis

products, at basinwide and statewide scales. The quality of these TWSA simulations will contribute to de-

termining the suitability of these models for the next phase of the NLDAS. Overall, it is found that all three

models are able to reasonably capture the monthly and interannual variability and magnitudes of TWSA.

However, the relative contributions of the individual water storage components to TWSAare very dependent

on the model and basin. A major contributor to the TWSA is the anomaly of total column soil moisture

content for CLM4.0 and Noah-MP, while the groundwater storage anomaly is the major contributor for

CLSM-F2.5. Other water storage components such as the anomaly of snowwater equivalent also play a role in

all three models. For each individual water storage component, the models are able to capture broad features

such as monthly and interannual variability. However, there are large intermodel differences and quantitative

uncertainties, which aremotivating follow-on investigations in the NLDASScience Testbed developed by the

NASA and NCEP NLDAS teams.

1. Introduction

After more than 15 years of research and development

for the North American Land Data Assimilation System

(NLDAS) project (Mitchell et al. 2004), its second phase

(NLDAS-2; Xia et al. 2012a,b) was implemented into the

National Centers for Environmental Prediction (NCEP)

operations inAugust 2014. This system is providing timely

near-real-time operational products such as energy fluxes,

water fluxes, and state variables to the user community,

including various government agencies, academia, and

private enterprises. Its major purpose is to support

national operational drought monitoring and prediction

tasks such as the U.S. Drought Monitor (Svoboda et al.

2002) and the Climate Prediction Center’s Seasonal

Drought Outlook. The current NLDAS-2 includes four

land surface models (LSMs): the community Noah LSM

(Ek et al. 2003), the Mosaic LSM (Koster and Suarez

1996), the Sacramento (SAC) Soil Moisture Accounting

model (Burnash et al. 1973), and the Variable Infiltration

Capacity model (VIC) (Liang et al. 1994). However, none

of these LSMs includes a groundwater module, which is a

very important component to represent the interaction

between deep soil water and an unconfined aquifer (Niu

et al. 2011; Barlage et al. 2015). In addition, the simple one-

or two-layer snow models used for snowpack simula-

tion in these LSMs lead to unrealistic runoff simulations,
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especially the timing of the peak in monthly runoff in the

spring over the mountainous western regions (Xia et al.

2012b; Cai et al. 2014b). These weaknesses are being ad-

dressed by the LSM development community by adding

and enhancing model physical processes to the NLDAS.

TheCommunity LandModel (CLM)was developed as

the land component of the Community Climate System

Model [now known as the Community Earth System

Model (CESM)]. It has various versions (Bonan 1996;

Oleson and Bonan 2000; Dickinson et al. 2006; Oleson

et al. 2008, 2010). In this study, Climate Land Model,

version 4.0 (CLM4.0; Lawrence et al. 2011), is used.

Noah LSM with multiphysics options (Noah-MP; Niu

et al. 2011; Yang et al. 2011) is developed by augmenting

the original Noah model with multiple physical process

enhancements is used in this study. The Noah-MP has

been coupled to the Weather Research and Forecasting

(WRF) Model (Barlage et al. 2015) and is used in both

the uncoupled and coupled WRF-Hydro systems

(Gochis et al. 2013; Senatore et al. 2015).

The Mosaic model has been upgraded to the Catch-

ment LSM (CLSM) by adding a shallow groundwater

module and enhancing its hydrology using a catchment-

based approach (Koster et al. 2000). As a key component

of NASA’s Earth model system, CLSM has been widely

used in both uncoupled reanalysis systems such as the

Modern-Era Retrospective Analysis for Research and

Applications (MERRA; Rienecker et al. 2011) and fully

coupled global Earth systemmodels such as the Goddard

EarthObserving System, version 5 (GEOS-5; DeLannoy

et al. 2013). The CLSM-Fortuna 2.5 (CLSM-F2.5) used in

NASAGEOS-5 (DeLannoy andReichle 2016) is used in

this study.

Although CLM4.0 and Noah-MP have been executed

in the NLDAS test bed over the past several years and

their performance has been evaluated in several aspects

(Cai et al. 2014b), their water storage components such as

terrestrial water storage, snow water equivalent (SWE),

total column soil moisture content, and groundwater

storage have not yet been comprehensively evaluated thus

far. For example, it has been recognized that a constant

value of 0.2 for specific yield value (a factor to convert

water-table depth to groundwater storage) to linearly

convert water-table depth to groundwater storage for

CLM4.0 and Noah-MP is not justified as it should

spatially vary based on regional hydrogeological con-

ditions (Cai et al. 2014b; Huang et al. 2013; Ren et al.

2016). Therefore, a reevaluation for terrestrial water

storage and groundwater storage is needed by using the

groundwater storage that is directly output from these

two LSMs, as we do here. Moreover, CLSM-F2.5 has not

yet been evaluated in the NLDAS test bed, although it is

the advanced land surface model intended to replace the

Mosaic model. To achieve the next-generation NLDAS,

selection of more advanced land surface models is a

critical task and is the first priority. Other priorities im-

portant to advancing the NLDAS are upgrading soil and

vegetation parameters, improving the surface meteoro-

logical forcing, executing on a finer spatial resolution, and

adding data assimilation capabilities.

Recently, a number of new reference datasets have

become available for use in assessment of landmodels and

Land Data Assimilation Systems globally and over the

continental United States (CONUS). These provide new

opportunities to comprehensively evaluate/reevaluate the

performance of the three LSMs. These reference datasets

include the terrestrial water storage anomaly (TWSA)

from the Gravity Recovery and Climate Experiment

(GRACE;Wahr et al. 1998; Landerer and Swenson 2012),

in situ soilmoisture observations collected from theNorth

American Soil Moisture Database (NASMD; Xia et al.

2015c;Quiring et al. 2016), in situwellmeasurements from

the U.S. Geological Survey (Rodell et al. 2007; Li et al.

2015), and SWE reanalysis data from the National

Weather Service’s Snow Data Assimilation System

(SNODAS; Clow et al. 2012; Artan et al. 2013).

In line with the NLDAS-2 configuration (Xia et al.

2012a) and Land Information System (LIS) framework

(Kumar et al. 2006), all three LSMs are driven by the

same hourly NLDAS-2 surface meteorological forcing

for the period 1979–2014 over theUnited States at 0.1258
spatial resolution. Section 2 describes the three LSMs and

their configurations, the experimental design, surface

forcing data, model output, and the model evaluation

criteria. Section 3 introduces the observed and reference

datasets. Section 4 presents the specific evaluations for

various water storage components. Section 5 discusses the

relative contributions of different components to the

TWSA, as well as possible applications. Section 6 gives

final conclusions and suggestions for future studies.

2. Models and forcing data

a. Models

The three LSMs used in this study are CLM4.0,

Noah-MP, and CLSM-F2.5. An important common

feature of these models is that they contain a ground-

water module. Soil depth varies from 3.8m in CLM4.0

and 2m in Noah-MP to 1m in CLSM-F2.5. The corre-

sponding unconfined aquifer depth varies from model to

model with the deepest being CLM4.0 (i.e., 5m) and the

shallowest being CLSM-F2.5 (i.e., 3–6m; Fig. 1). Table 1

compares the attributes of these three models from the

aspect of surface energy and water cycles. Additional

model technical details are described below.
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1) CLM4.0

CLM has a successful development history from its

original version (Bonan 1996) to its version 4.0 (Lawrence

et al. 2011) as a result of a community development effort.

Compared to its previous versions, CLM4.0 was upgraded

by augmenting the representations of various hydrological

processes, including those associated with soil hydrology,

runoff generation, groundwater dynamics, and snowpack.

The 3.8-m soil depth is divided into 10 hydrologically ac-

tive layers with varying soil layer thicknesses (see Table

1). Below the 3.8-m soil depth, the 38.2-m-thick ground is

divided into five bottom thermal layers that are not hy-

drologically active to accurately capture soil temperature

dynamics in century-scale integrations (Alexeev et al.

2007). Therefore, CLM4.0 has a total soil depth of 3.8m

for hydrological processes and 42m for thermodynamic

processes. Soil water is calculated by using a revised nu-

merical solution of the one-dimensional Richards equa-

tion (Zeng and Decker 2009). Overland flow is computed

by using a simplified TOPMODEL-based representation

that considers subgrid variability of surface topography

and its impact on runoff generation through the Dunne

mechanism (Niu et al. 2005). Base flow is calculated as an

exponential function of the grid-mean water-table depth

as used in the original TOPMODEL, in which the water-

table depth is inferred from the aquifer water storage

scaled by the average specific yield as described in Niu

et al. (2007). The aquifer is assumed to have a storage

capacity of 5000mm. Because of the lack of data to con-

strain the specific yield, it is set to be 0.2 globally (Oleson

et al. 2010). The soil hydrology scheme of CLM4.0 in-

cludes the exchange of water between an unconfined

aquifer and the overlying soil column (Niu et al. 2007).

The five-layer snow model is updated with new snow

cover and snow burial fraction calculated by using the

FIG. 1. Schematic diagram describing model structure and water

cycling processes for three LSMs [modified from Lawrence et al.

(2011)]. The number of soil layers and soil depth vary among the

three models (see Table 1). Note that CLM4.0 and Noah-MP

physics are executed for uniform grid cells, while CLSM-F2.5 is

executed for hydrological catchment units.

TABLE 1. Primary attributes of the three LSMs used in this study.

Description

CLM4.0 (Lawrence

et al. 2011)

Noah-MP (Niu

et al. 2011)

CLSM-F2.5 (Koster

et al. 2000)

Energy balance Yes Yes Yes

Water balance Yes Yes Yes

Model time step 1 h 1 h 1 h

No. of model soil layers 10 4 2

Depth of total soil column (m) 3.8 2.0 1.0

Model soil layer thickness (m) 0.018, 0.028, 0.045, 0.075, 0.124,

0.204, 0.336, 0.553, 0.913, 1.506

0.1, 0.3, 0.6, 1.0 0.02, 1.0

Tiling: vegetation Yes Yes Yes

No. of snow model layers 5 3 3

Frozen soil thermal Yes Yes Yes

Frozen soil hydraulics Yes Yes Yes

Soil thermodynamics Heat conduction equation Heat conduction equation Heat conduction equation

Soil temperature profile Yes Yes Yes

Soil water drainage Yes Yes Yes

Soil water vertical diffusion Yes Yes Yes

TOPMODEL for surface runoff Yes Yes Yes

No. of canopy layers 1 1 0

Dynamical vegetation Yes (Dickinson et al. 1998) Yes (Dickinson et al. 1998) No

Explicit vegetation Yes Yes Yes

Canopy resistance Ball–Berry algorithm

(Ball et al. 1987)

Ball–Berry algorithm

(Ball et al. 1987)

Jarvis algorithm

(Jarvis 1976)
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parameterization schemes of Niu and Yang (2006) and

Wang and Zeng (2009). The Snow, Ice, and Aerosol Ra-

diative (SNICAR)model describing grain size–dependent

snow aging and vertically resolved snowpack heating is

calculated following Flanner et al. (2007).

CLM4.0 contains spatial heterogeneity of surface

land-cover types, including glacier, lake, wetland, ur-

ban, and vegetated surfaces. The latter is further decom-

posed into 15 plant functional types (PFTs) and bare

ground. In this study, the percentages of surface land-

cover types and PFTs within a 0.1258 grid cell are derived

from the 0.058 Moderate Resolution Imaging Spectror-

adiometer (MODIS)-based global land parameter dataset

in 2005 (Ke et al. 2012). Soil texture is produced from a

hybrid of the 30-arc-s State Soil Geographic Database

(STATSGO; Miller and White 1998). The two-layer soil

type data are converted to a composition of clay and sand

(Cosby et al. 1984) within each 30-arc-s grid cell to 10

vertical layers down to a depth of 3.8m.

2) NOAH-MP

Several recent LSM physics improvements were

added to the early Noah model (Ek et al. 2003) to con-

struct the newer Noah-MP (Niu et al. 2011; Yang et al.

2011). The major Noah LSM augmentations include the

following: 1) modifying the model structure to include a

one-layer canopy and three-layer snowpack (the Noah

LSM has no explicit canopy layer and includes only a

one-layer bulk snowpack), 2) adding a tiling scheme

(using different tiles for vegetation and bare soil) that

separates vegetated areas from bare ground to better

calculate the land surface energy balance (the Noah

LSM applies a single vegetation type for each grid cell,

but also uses the green vegetation fraction to weight the

contribution of evapotranspiration from vegetation and

direct evaporation from bare ground to the total evap-

oration), 3) incorporating a more reasonable permeable

frozen soil scheme by separating permeable and im-

permeable fractions (Yang and Niu 2003), 4) adding a

TOPMODEL-based runoff scheme (Niu et al. 2005)

and a Simple Groundwater Model (SIMGM; Niu et al.

2007) to improve the modeling of soil hydrology, and

5) adding a short-term leaf dynamic model modified

from Dickinson et al. (1998) to simulate leaf area index

(LAI). Noah-MP contains multiparameterization options

for dynamic vegetation, canopy stomatal resistance, runoff

generation, a groundwater module, and other physical

processes. Based on previous experiments from Niu and

Yang (2006), the schemes used in this study are dynamic

vegetation, the Ball–Berry scheme for canopy stomatal

resistance, TOPMODEL runoff calculationwith SIMGM,

the Monin–Obukhov scheme for the surface exchange

coefficient for heat and moisture, the frozen soil scheme

from Niu and Yang (2006), and a modified two-stream

scheme for the transfer of radiation through the vegetation

canopy. Noah-MP has been evaluated at regional (Niu

et al. 2011; Cai et al. 2014a; 2014b) and global scales (Yang

et al. 2011).

Noah-MP applies the Canadian Land Surface Scheme

type for snow cover albedo (Verseghy 1991), the

STATSGO soil texture data, and the 0.1448 global

monthly snow-free albedo derived by Csiszar and

Gutman (1999). Last, Noah-MP keeps the same four soil

layers and layer thicknesses (see Table 1) as in the

previous Noah version.

3) CLSM-F2.5

CLSM-F2.5 is a land model intended for the land

component of global-scale coupled land–atmosphere

modeling (Koster et al. 2000). Unlike CLM4.0 and

Noah-MP, the model’s basic computational unit is the

hydrological catchment/watershed rather than a uni-

form latitude–longitude grid cell. In each catchment the

vertical profile of soil moisture is determined by an

equilibrium soil moisture profile from the surface to the

water table and by two additional variables that describe

deviations from the equilibrium profile in a 1-m root-

zone layer and a 2-cm surface layer, respectively. To

increase the subgrid heterogeneity of soil moisture, each

catchment is separated into three distinct and dynami-

cally varying subareas: a saturated region, an unsatu-

rated region, and a wilting region where different runoff

and evapotranspiration schemes are applied. It must be

noted that CLSM-F2.5 does not explicitly simulate the

water table. The catchment deficit variable (amount of

water needed to fill a catchment) reflects water changes

in the entire catchment including shallow unconfined

aquifer. Groundwater storage can be derived from the

catchment deficit and the maximum water capacity of

each catchment, which is determined by the bedrock

depth parameter and soil porosity. Following Houborg

et al. (2012), the bedrock depths in the CLSM-F2.5 here

were increased uniformly by 2m everywhere so that the

dynamic range of simulated TWSA would better agree

with GRACE-derived TWSA, especially in dry periods

(Li et al. 2012).

CLSM-F2.5 also includes a three-layer snowpackmodel

that accounts for snow melting and refreezing, dynamic

changes in snow density, snow insulating properties, and

other physics relevant to the growth and ablation of the

snowpack (Lynch-Stieglitz 1994). The snow model con-

tains three prognostic variables (heat content, SWE, and

snow depth) for each of three vertically stacked layers.

The treatment of snow albedo uses different reflectance

values for the visible (VIS) and near-infrared (NIR) ra-

diation bands, with reductions in albedo imposed by both
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vegetation masking and fractional snow cover (Hansen

et al. 1983; Stieglitz et al. 2001). CLSM-F2.5 uses a

modified Simple Biosphere Model (SiB; Sellers et al.

1996) albedo parameterization scheme to compute

surface 1) visible direct, 2) near-infrared direct,

3) visible diffuse, and 4) infrared diffuse albedo at each

model time step. The modified SiB scheme takes ad-

vantage of available MODIS albedo data to match the

annual cycles of visible diffuse and infrared diffuse al-

bedo of MODIS (Moody et al. 2008; Gao et al. 2014).

Last, the CLSM-F2.5 runs for this study use 1) the

National Geophysical Data Center (NGDC) soil texture

data (Reynolds et al. 2000) with soil hydraulic parameters

from the Second Global Soil Wetness Project (GSWP-2;

Dirmeyer et al. 2006), 2) the vegetation classification data

derived from University of Maryland (UMD) Advanced

Very High Resolution Radiometer (AVHRR) on NOAA

polar satellites global 1-km vegetation database, and 3)

AVHRR monthly GSWP-2 (Dirmeyer et al. 2006) LAI

and greenness fraction climatology.

b. Surface meteorological forcing data

The 36-yr (1979–2014) hourly land surface forcing data

produced for NLDAS-2 (Xia et al. 2012a) are used to

drive the three land models. This surface forcing data in-

clude gauge-based precipitation, 2-m air temperature and

specific humidity, surface pressure, downward shortwave

and longwave radiation, and 10-m wind speed. The pri-

mary data source is the 36-yr, 3-hourly, 32-km output of

North American Regional Reanalysis (NARR; Mesinger

et al. 2006). All of these NARR outputs are temporally

interpolated to hourly resolution and spatially interpo-

lated to a 0.1258 NLDAS grid. To account for impact of

elevation differences between the NLDAS grid and the

NARR grid for air temperature, humidity, and downward

longwave radiation, a terrain height adjustment is applied

to the air temperature using a uniform lapse rate of

6.5Kkm21. The specific humidity and downward long-

wave radiation are then adjusted by the adjusted air

temperature (Cosgrove et al. 2003a).

TheNLDAS-2 precipitation is anchored to theClimate

Prediction Center (CPC) 0.1258, gauge-only, daily U.S.

precipitation analysis with bias correction from the

monthly Parameter-Elevation Regressions on Indepen-

dent Slopes Model (PRISM; Daly et al. 1994). The daily

NLDAS-2 precipitation is temporally disaggregated to

hourly values by using hourly temporal weights derived

from either the NOAA/NCEP/Environmental Modeling

Center hourly stage II radar radiation (Lin and Mitchell

2005), CPC morphing technique (CMORPH) hourly

precipitation (Joyce et al. 2004), CPC coarse-resolution

hourly precipitation, or the interpolated hourly NARR

precipitation in that order based on data availability. The

temporally interpolated downward shortwave radiation

is bias corrected by a ratio-based method (Berg et al.

2003) that applies the UMD’s Surface Radiation Budget

(SRB) dataset (Pinker et al. 2003).

c. Model spinup procedure

For LSM simulations in general, the initial conditions

(e.g., soil moisture) have a significant impact on water

fluxes, energy fluxes, and state variables. To minimize

this impact, an individual LSM needs to run many years

(typically called a spinup run) to achieve its own equi-

librium state. Yang et al. (1995) investigated the spinup

time required for 22 LSMs and found that the models

took about 12 years to reach the equilibrium for tropical

forest and grassland sites. Cosgrove et al. (2003b) dis-

cussed the LSM spinup behavior in NLDAS and found

that the models need 2–10 years to reach their own

equilibrium states depending on the model and climate

region (dry or wet region). It should be noted that the

models discussed above do not include a groundwater

module. For those LSMs with groundwater dynamics,

the required spinup time is over 70 years (Niu et al. 2007;

Cai et al. 2014b).

In this study, CLM4.0 was retrospectively run by

recycling the NLDAS-2 forcing from 1979 to 2007 for

36 cycles (;1000 years) until all state variables including

10-layer soil moisture, 15-layer soil temperature, and

water-table depth reached their equilibrium. This very

long spinup period is needed for CLM4.0 because it

has a very deep soil column and water table, which

requires a substantially long time period for soil tem-

perature and moisture to reach equilibrium, especially

in cold and dry regions (Liang et al. 2003). The Noah-

MP and CLSM-F2.5 were initialized by running the

models repeatedly two times through a 35-yr period

(1979–2013). For both Noah-MP and CLSM-F2.5 sim-

ulations, nearly 100% of all NLDAS grid points achieve

an equilibrium state as the change of terrestrial water

storage values is within 1% after 70 years of spinup.

d. Model output

After the model spinup runs were completed, the

LSMs were executed from 1 January 1979 to 31 Decem-

ber 2014 using NLDAS-2 hourly meteorological surface

forcing. The 36-yr monthly total column soil moisture

content, top 1-m soil moisture, SWE, and groundwater

storage change were output from all three LSMs.

The TWSA is calculated as the sum of 1) total column

soil moisture content anomaly (SMCA), 2) snow water

equivalent anomaly (SWEA), and 3) groundwater storage

anomaly (GWSA). We use a common inland mask to

exclude all grid cells of surface water bodies such as rivers,

lakes, ponds, and reservoirs for both GRACE and the
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models as there is no explicit realistic representation of

those water bodies in the three models of this study. This

exclusion is not realistic; however, it is reasonable as these

water bodies are excluded from the calculation of water

balance in most LSMs, such as the LSMs in this study.

e. Evaluation strategy

The TWSA and its component anomalies (i.e., SMCA,

SWEA, and GWSA) are evaluated against GRACE-

based TWSA, U.S. Geological Survey (USGS)-measured

GWSA, and SNODAS-reanalyzed SWEA over 6–12

National Weather Service (NWS) River Forecast Centers

(RFCs; Fig. 2), depending on which water storage com-

ponent is assessed. RFC basins are selected here as the

assessment spatial scale because their sizes are sufficient to

meet the requirement for application of GRACE TWSA

data. GRACE data are useful for basins with a typical

basin size larger than ;1000000km2 (Bingham and

Hughes 2006; Syed et al. 2005; Wahr et al. 2004, 2006),

although GRACE data were used recently for some

smaller basins with an area size between 200000 and

1000000km2 (Long et al. 2014; Strassberg et al. 2009;

Swenson et al. 2006, 2008; Xiao et al. 2015). Moreover,

RFC basins are an appealing spatial averaging choice,

because the hydroclimatology across a given RFC basin is

reasonably uniform spatially. As soil moisture measure-

ments for the top 1m are very sparse over both temporal

and spatial scales (Xia et al. 2015c; Quiring et al. 2016),

only monthly data from four states/regions (i.e., Alabama,

Illinois, Oklahoma, and western Texas) are used in this

study.

To assess model simulations of monthly TWSA and

its individual water storage components, we utilize the

mean square error (denoted as E2) of the time series of

the monthly anomaly with respect to the observed

anomaly. We follow the common practice of expressing

E2 as the sum of 1) the square of the standard deviation

of the error and 2) the square of the bias error:
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where Em is the traditional bias error and sS and sO are

the standard deviation (not error standard deviation) of

the simulated data (i.e., model) and observed data, re-

spectively. VariablesSi andOi (i5 1,N) are time series of

monthly model data and observation data, respectively.

The parameter g is the ratio between the modeled and

observed standard deviation. Variables S and O are

multiyear mean modeled and observed data and S0
i and

O0
i are time series of model and observation monthly

anomalies (with respect to their multiyear mean). Vari-

able N is total number of months. Variable Ep is used to

measure the errors between modeled and observed data

anomaly. Additionally, we use g to evaluate how well the

observed variance is modeled.When g , 1, this indicates

the simulated anomaly is smoother than the observed

anomaly,while g. 1 indicates the simulated anomaly has

larger variability than the observed anomaly. The bias

portionEm measures how far themeanofmodeled data is

from the mean of observed data. Variable Em will not be

discussed in this study because 1) GRACE provides only

TWSAdata and 2) themean bias of themodel simulation

can be easily removed by a bias-correction procedure.

Hence, in this setting, a perfect simulation means that

Ep 5 0 and g 5 1.

In this study, two anomaly time series are used for

analysis and comparison. The first anomaly time series are

calculated as the differences between the raw time series

and long-term mean values as presented in Eq. (1f). They

are used for analyses and calculations, except anomaly

correlation (AC) calculation. The second anomaly time

series are computed as the differences between the raw

FIG. 2. Names and boundaries of the domains of 12 NWS RFCs,

locations of 181USGSwells, and locations of 195 in situ soil moisture

observational sites (CBRFC,Colorado; CNRFC,California–Nevada;

WGRFC, West Gulf; MBRFC, Missouri; ABRFC, Arkansas;

NCRFC, North-Central; NWRFC, Northwest; MARFC, Mid-

Atlantic; SERFC, Southeast; NERFC, Northeast; LMRFC,

Lower Mississippi; and OHRFC, Ohio).
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time series and long-term mean seasonal cycles calculated

frommultiyearmonthlymean time series. They aremainly

used to calculate AC values that can reasonably represent

the simulation skill and interannual variability.

3. Observed and reference datasets

a. GRACE satellite–based TWSA

The twin satellites of GRACE measure the monthly

changes in Earth’s gravity field over space and time by

using the variation of the distances between the two sat-

ellites (Tapley et al. 2004). Changes in the gravity field can

be used to derive changes in (vertically integrated) ter-

restrial water storage. The effective resolution ofGRACE

data is around a few hundred kilometers because of the

postprocessing techniques applied for increasing the signal

to noise ratio (Rowlands et al. 2005; Swenson et al. 2006;

Landerer and Swenson 2012).

In this study, we use the latest product release

(version 05) of the GRACE-derived TWSA (RL05;

Landerer and Swenson 2012). The data are obtained

from the GRACE Tellus website (ftp://podaac-ftp.jpl.

nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/).

The RL05 version includes three products processed at

the following three centers: the Center for Space Re-

search (CSR) in the United States, the Jet Propulsion

Laboratory (JPL) in the United States, and the Ger-

man Research Centre for Geosciences (GFZ) in Ger-

many. The anomalies of each of the three TWSA

products from the Tellus website are calculated rela-

tive to each product’s own long-term mean for the

2004–09 time period. The products feature a spatial

discretization of 18 and a monthly time step. The RL05

product, spanning from December 2002 to January

2015, contains a total of 146 months of data with

10 months of missing data (i.e., June 2003; January and

June 2011; May and October 2012; March, August, and

September 2013; and February and December 2014).

In this study we use a simple average of the CSR, GFZ,

and JPL TWSA products as our observed TWSA

value, following Sakumura et al. (2014), to reduce the

noise in the three different products.

b. USGS wells observations

The 181 USGS wells are located in the Missouri

Basin RFC (MBRFC), the combined Arkansas Basin

RFC and Lower Mississippi RFC (AB-LMRFC), the

North-Central RFC (NCRFC), the Mid-Atlantic RFC

(MARFC) covering only Pennsylvania and New Jersey,

the Northeast RFC (NERFC) spanning only Massa-

chusetts and New York, and the Ohio RFC (OBRFC;

see Fig. 2 and Table 2). The observed well data have

been used for validating GRACE-derived or model-

estimated GWSAs (Rodell et al. 2007; Cai et al. 2014a;

Li and Rodell 2015; Li et al. 2015). These wells were

selected for exhibiting seasonal variation and minimal

impact of pumping or injections.We obtained themonthly

observations of water-table depth from the USGS

Groundwater Watch website (http://groundwaterwatch.

usgs.gov/), USGS National Water Information System,

and the Illinois State Water Survey. The lengths of the

data records range from 10 to over 30 years (Table 2).

Monthly GWSAs were derived from water-table depth

and specific yield values (see Li and Rodell 2015). The

specific yield values Sy were determined individually

for each well based on published studies on the aquifer

formation or, as a last resort, published Sy estimates for

the aquifer type.Whenmultiple possible Sy values were

found for a given well, an Sy within that range was se-

lected based on the well depth and comparison of the

dynamic range of water depths with those of neigh-

boring wells. It should be pointed out that these Sy
values are the best estimates, not obtained through

aquifer testing.

c. SNODAS snow water equivalent

The SNODAS program provides daily gridded esti-

mates of SWE, and related snow parameters, at a 1-km

resolution for the United States (Clow et al. 2012).

SNODAS combines data from various sources such as

ground observations and airborne and satellites esti-

mates with model results to produce a 1-km spatially

distributed estimate of SWE (Carroll et al. 2006).

Forcing data come from the NOAA Rapid Update

Cycle 2 (RUC2) numerical weather prediction model

TABLE 2. RFC name, data period, number of wells, average specific yield Sy, average well depth dwell, average depth to groundwater dgw,

and average annual NLDAS precipitation P.

RFC name Data period No. of wells Sy (unitless) dwell (m) dgw (m) P (mm)

MBRFC 1980–2010 19 0.14 30 9 600

AB-LMRFC 1980–2010 13 0.16 86 17 970

NCRFC 1980–2010 13 0.17 19 6 900

MARFC 2002–11 62 0.12 35 8 1200

NERFC 1992–2011 64 0.23 12 6 1210

OHRFC 1980–2010 10 0.09 38 7 1190
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output and are downscaled from 13-km into 1-km

resolution using a digital elevation model. The multi-

layer snow model is an energy and mass balance model

based on the Snow Thermal Model released in 1989

(SNTHERM.89; Jordan 1991). Assimilated observa-

tions include state and federal automated ground ob-

servations, snow surveys, and gamma flights as well as

satellite-based snow extent information. As a publicly

available, large-scale SWE product, it has been eval-

uated in many previous studies (Azar et al. 2008; Clow

et al. 2012; Artan et al. 2013).These results show that

the SNODAS is a good SWE reference dataset when

compared with in situ observations. It is also used to

evaluate LSM SWE simulations and satellite retrievals

for SWE (Barlage et al. 2010; Vuyovich et al. 2014).

We obtained 11-yr (2004–14) daily 1-km SNODAS

SWE data from the National Snow and Ice Data

Center website (http://nsidc.org/data). The monthly

SWE is calculated from daily data and then monthly

values are regridded to the 0.1258 NLDAS grid.

d. NASMD soil moisture content observations

NASMD (Quiring et al. 2016) is a collection of daily

soil moisture values measured at about 1800 sites over

30 networks across the United States and Canada (Xia

et al. 2015c). In situ soil moisture content has been

quality controlled by excluding instrument malfunc-

tion errors, partially frozen soil cases, and other con-

trol processes. The details are further presented in Xia

et al. (2015c) and Quiring et al. (2016). The daily data

can be obtained from the NASMD website (http://

soilmoisture.tamu.edu/Data/Download.aspx). Based

on the length, quality, and measurement depth of data

records, we selected four states/regions for our as-

sessment: Alabama, Oklahoma, Illinois, and western

Texas (see Fig. 2 and Table 3). The monthly soil

moisture content for the top 1-m soil depth is calcu-

lated from the daily values based on the vertical inte-

gration of observations at multiple discrete depths.

These data have been widely applied to many research

studies (Xia et al. 2014, 2015a,b; Zhuo et al. 2015;

Otkin et al. 2016).

4. Evaluation of modeled water storage component
anomalies

a. Evaluation of modeled TWSA using GRACE

Terrestrial water storage from GRACE includes

contributions from soil moisture, snow and ice,

groundwater, surface water (e.g., lakes and rivers), and

vegetation water content. Its anomaly (TWSA) has

been widely used to evaluate the performance of vari-

ous LSMs (Güntner et al. 2007; Niu et al. 2007; Lo et al.

2010; Houborg et al. 2012; Leng et al. 2014; Cai et al.

2014a,b). Over the United States, the major term for

terrestrial water storage (TWS) is soil moisture, SWE,

groundwater, and surface water storage. As most LSMs

(including the three LSMs studied herein) do not in-

clude lake and river modules, their terrestrial water

storage is generally calculated as a sum of soil moisture,

SWE, and groundwater storage when a groundwater

module is included.

We used a simple mathematical average of the CSR,

GFZ, and JPL products to represent the GRACE esti-

mates. We calculated anomalies of modeled data rela-

tive to the same mean period as the Tellus website used

for GRACE (i.e., 2004–09). We used an inland water

mask, RFCmask, gridded modeled TWSA, and gridded

GRACE TWSA to calculate the spatially averaged

TWSA for the 12 RFCs (Fig. 2).

A comparison of the 12-yr (2003–14) mean seasonal

cycle in Fig. 3 shows that the TWSA simulated from all

three models is close to GRACE-observed TWSA for

most of the 12 RFCs, suggesting reasonable model

simulations. However, the CLSM-F2.5 simulation has

relatively large differences from GRACE for MARFC

and OHRFC, while the CLM4.0 simulation has rela-

tively large differences for SERFC and OHRFC (see

Fig. 2 for full RFC names). All three models depart

TABLE 3. Information on measurement networks, number of sites, data covering periods, and references of networks is given (USCRN is

U.S. Climate Reference Network).

Region name No. of sites

Integrated soil

depth (m) Data covering period Networks and reference

Alabama 22 1 From 1 Jan 2002 to 31 Dec 2012 (daily) SCAN (Schaefer et al. 2007) and USCRN

(Bell et al. 2013)

Illinois 17 1, 2 From Jan 1984 to Dec 2004 (monthly) Illinois soil moisture databank

(Robock et al. 2000)

Oklahoma 97 1 From 1 Jan 2000 to 31 Dec 2012 (daily) Oklahoma Mesonet Network

(Scott et al. 2013)

Western Texas 59 1 From 1 Jan 2000 to 31 Dec 2010 (daily) West Texas Mesonet Network

(Schroeder et al. 2005)
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notably from the GRACE seasonal cycle in NERFC.

Clearly, each model has different degrees of perfor-

mance depending on which RFC is examined. Thus,

further effort is needed to improve the consistency of

the modeled capability across the RFCs. Interest-

ingly, in Fig. 3, the models seem better able to match

the GRACE mean seasonal cycle in the drier RFCs,

which have smaller amplitude of their seasonal cycle,

than in the wetter RFCs.

In Fig. 4, the AC is typically larger than 0.5 (the

NERFC is a notable exception with all AC, 0.35) and

usually larger than 0.7 for all 12 RFCs, except for

MARFC, OHRFC, and NERFC. It is evident that the

simulation skill represented by AC depends on the

model and basin. For example, CLM4.0 has the highest

AC values in six RFCs (CBRFC, CNRFC, MBRFC,

NCRFC, NWRFC, and MARFC), Noah-MP has the

highest AC values in three RFCs (MARFC, NERFC,

and OHRFC), and CLSM-F2.5 has the highest AC

value in four RFCs (WGRFC, ABRFC, SERFC, and

LMRFC; see Fig. 2 for full RFC names). However,

each model’s mean AC value averaged over the 12

RFCs is similar, specifically, 0.70 for Noah-MP, 0.69

for CLM4.0, and 0.68 for CLSM-F2.5 (Fig. 4). The

reason why model performance varies substantially

from model to model and basin to basin remains un-

clear and needs further investigation. However, the

deeper soil column in CLM4.0 may help increase its

AC values in relatively dry RFCs. All three models

have better performance (larger AC values) for rela-

tively dry RFCs (Figs. 4a–g) than for relatively wet

RFCs (Figs. 4h,i).

We next examine in Fig. 5a the models’ ability to

simulate TWSA variability, as measured by the pa-

rameter g [Eq. (1c)]. All three models underestimate

TWSA variability (g , 1) in dry basins, while in wet

basins the models tend to overestimate anomaly vari-

ability (g . 1), especially in CLSM-F2.5, and less so in

Noah-MP. Figure 6a, which presents the Ep [Eq. (1b)]

of simulated TWSA for each RFC with respect to

GRACE data, illustrates that Ep values are larger

over the wet basins, with CLSM-F2.5 showing large

errors for MARFC, NERFC, and OHRFC basins and

CLM4.0 showing large error for OHRFC. Such larger

FIG. 3. Mean annual cycle of mean monthly TWSAs (mm) for each of 12 RFCs for three models and GRACE observations,

calculated from a 12-yr (2003–14) monthly time series (thick black line with open circles, GRACE; purple line, CLM4.0; red line,

Noah-MP; blue line, CLSM-F2.5).
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errors over wet basins than dry basins have been found

in previous studies. One such study is Swenson and

Lawrence (2015), which attributed the large errors as

arising from large wetting events owing to the lack of a

finite lower boundary in the bulk aquifer model that

potentially could be fixed by removing the bulk aquifer

model and adding a zero-flux boundary condition at

the base of the soil column. In addition, the hydrologic

parameters, including those associated with surface/

subsurface runoff, soil moisture redistribution, aquifer

storage and yield, and snow/snowmelt, could be tuned

using data available in NLDAS to better represent the

regional hydrologic regime, as demonstrated in Ren

et al. (2016). The model development teams of NCAR

and NASA have undertaken efforts to identify actual

physical causes to reduce these large errors.

b. Evaluation of modeled GWSAs using USGS well
data

The first water storage component we evaluate here is

groundwater storage, which is output directly from the

three models for each 0.1258 grid cell. For a given well,

the closest grid cell is selected to compare with USGS

observations at that well. For a given region, the spatial

average is calculated using the same number of grid cells

as USGS wells (Table 2). The modeled GWSA is cal-

culated in the same manner as the observed anomaly

from USGS wells, as described in section 3b (Li and

FIG. 4. Comparison of the 12-yr (2003–14) monthly time series of TWSAs (mm) from the GRACE-derived dataset (thin black line

with open circles) with that simulated by the three models for 12 RFCs (purple line, CLM4.0; red line, Noah-MP; blue line, CLSM-

F2.5). The TWSA climatology is calculated from January 2004 to December 2009, matching the period used by GRACE Tellus. We

note that the simulated terrestrial water storage includes only total column soil moisture, SWE, and groundwater storage, thus

omitting reservoir storage. The GRACE terrestrial water storage includes total column soil moisture, SWE, canopy water storage, ice,

reservoir storage (e.g., rivers, lakes, and ponds), and groundwater. The basin varies from (a) the driest (CBRFC) to (l) the wettest

(OHRFC) based on the aridity index represented by mean annual precipitation and potential evapotranspiration. The AC values are

calculated from monthly anomaly time series with respect to the mean monthly seasonal cycle shown in Fig. 4. Values are shown for

each model with the corresponding model line colors. Note that the y-axis ranges from2200 to1200 in (a)–(d) and from2300 to 300

in (e)–(l).
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Rodell 2015; Li et al. 2015), where themultiyear average

value is subtracted from the monthly value.

Figure 7 presents the multiyear time series of

monthly GWSA of the models and USGS well obser-

vations. In general, CLSM-F2.5 shows the highest

GWSA anomaly amplitude (and highest anomaly bias)

for all six regions, while Noah-MP shows lower anom-

aly amplitude and CLM4.0 shows the lowest anomaly

amplitude for all six regions. The most likely reason for

substantial differences among the models in GWSA

magnitude is the difference in model soil depths. When

precipitation variation (signal) reaches the aquifer, it is

filtered by total column soil through the infiltration

process. The deep (shallow) soil layer filters more (less)

signal, which leads to small (large) variation magnitude

in GWSA. Figure 5b shows the g values for GWSA.

CLSM-F2.5 has the largest g values (higher variability

than observed), while CLM4.0 has the smallest g values

(lower variability than observed). In Fig. 6c the corre-

sponding Ep values for GWSA vary by model and ba-

sin. Overall, CLSM-F2.5 has relatively small error for

all basins except for OHRFC (Fig. 6c). CLM4.0 has the

deepest soil column (i.e., 3.8m), CLSM-F2.5 has the

shallowest soil column (i.e., 1m), and Noah-MP is in

between (i.e., 2m). The recent sensitivity study of

Swenson and Lawrence (2015) showed that soil layer

depth has a significant impact on groundwater dy-

namics and storage variation. When the soil column

depth in the CLM4.5 model is calibrated with GRACE

TWSA (not shown), the derived optimal soil depth

varies from region to region and from grid cell to grid

cell. From our study we speculate that soil depth may

be optimal when it is between 1 and 2m, although

further investigation is needed to examine this issue,

including utilizing the newly developed global soil da-

tabase (Pelletier et al. 2016),

As evident from Fig. 7, CLSM-F2.5 and Noah-MP

generally yield a larger anomaly correlation for GWSA

than CLM4.0, with respect to the USGS observed

anomaly. All three models show very low anomaly

correlations for the AB-LMRFC basin. Li and Rodell

(2015) suggested that the water table in these wells may

be much deeper than what these models were designed

for, and the very long response time of groundwater to

atmospheric forcing in drier regions like AB-LMRFC

may be difficult to capture by these models. Notably,

FIG. 5. The g value (ratio ofmodel-simulated toGRACE-observed std dev) of the threemodels for (a) TWSA for

12 RFCs, (b) GWSA for 6 regions, (c) SWEA for 12 RFCs, and (d) SMCA for 4 regions (purple line, CLM4.0; red

line, Noah-MP; blue line, CLSM-F2.5). The data period used here is 2003–14 for TWSA, 1980–2011 forGWSA (see

Table 2), 2004–14 for SWEA, and 1980–2010 for SMCA (see Table 3).
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CLM4.0 exhibits a negative anomaly correlation for

NERFC, which is a problem region in which CLM4.0

has difficulty in reasonably simulating groundwater

dynamics (Swenson and Lawrence 2015).

c. Evaluation of modeled SWEA using SNODAS

The second water storage component we assess is

SWE. In the colder regions of the United States, SWE

is an important water storage term. It not only affects

the estimates of terrestrial water storage but also in-

fluences total runoff/streamflow simulation and soil

moisture via snowmelt. SNODAS (Clow et al. 2012)

is a snow reanalysis product (see section 3c) that has

been widely used to evaluate the land surfacemodel SWE

simulations and satellite retrievals (Barlage et al. 2010;

Vuyovich et al. 2014). In this study, we use SNODAS as

the reference analysis from which to derive model skill

in terms of the AC values for the SWE simulation given

in Table 4. The AC values are generally large for all

three models in the four relatively cold RFCs (i.e.,

CNRFC, CBRFC, NWRFC, andNERFC), where snow

processes including snowfall, snowmelt, and snow

sublimation are substantial during the cold season,

but are small in the four relatively warm RFCs (i.e.,

ABRFC, SERFC, LMRFC, and OHRFC), as expected.

The other four RFCs have intermediate AC values. Al-

though correlation values vary bymodel andbygivenRFC,

the mean value for each model across all 12 RFCs is 0.56,

0.54, and 0.57 for CLM4.0, Noah-MP, and CLSM-F2.5,

respectively, indicating a similar level of average skill across

the models.

A comparison of the annual cycle of monthly mean

SWE from the models and SNODAS for the 12 RFCs is

shown in Fig. 8. The Noah-MP SWE simulation agrees

most closely with the SNODAS over all 12 RFCs, al-

though its amplitude is somewhat low. CLSM-F2.5 has

the smallest amplitude of SWE and exhibits large un-

derestimation compared to SNODAS (seeFig. 9). CLM4.0

also underestimates SWE relative to SNODAS, but

not as much as in CLSM-F2.5. Additionally, Fig. 5c

illustrates that all three models substantially underesti-

mate (g , 1) the temporal variability of monthly mean

FIG. 6. TheEp (mm) of the threemodels derived fromGRACEdata for (a) TWSA for 12RFCs, (b) SWEA for 12

RFCs, (c) GWSA for 6 regions, and (d) SMCA for 4 regions (purple bar, CLM4.0; red bar, Noah-MP; blue bar,

CLSM-F2.5). Note that the y-axis ranges from 0 to 100 in (a), from 0 to 40 in (b), and from 0 to 80 in (c),(d). The data

period used here is 2003–14 for TWSA, 1980–2011 for GWSA (see Table 2), 2004–14 for SWEA, and 1980–2010 for

SMCA (see Table 3).
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SWEAcompared to SNODAS in virtually all 12RFCs, in

particular CLSM-F2.5, while Noah-MP is the closest to

unity (g5 1) of the three models. Last, Fig. 6b shows that

CLSM-F2.5 has the largest SWE errors (i:e:, Ep) of the

models with respect to SNODAS in the colder RFCs,

especially in NWRFC and NERFC, where CLM4.0 also

has large error.

We next examine an example of midwinter spatial dis-

tribution of SWE across the continental United States for

SNODASand the threemodels in Fig. 9, which depicts the

CONUS distribution of 11-yr-average SWE for February.

Noah-MP exhibits results comparable to SNODAS SWE

in the western, north-central, and northeastern regions.

All three models exhibit a spatial pattern of SWE cover-

age comparable to that of SNODAS, except Noah-MP

and CLM4.0 somewhat overestimate the coverage in

the southeastern and south-central United States. More

significantly, all three models significantly underestimate

the SWEmagnitude compared to SNODAS in the higher

elevations of the western United States, though Noah-

MP shows less underestimation thanCLM4.0 andCLSM-

F2.5 (SNODASmay slightly overestimate monthly SWE

observations, in particular at low elevations; Clow et al.

2012). CLSM-F2.5 in particular substantially underesti-

mates the SWE magnitudes of SNODAS over the west-

ern highest elevations.

To investigate why CLSM-F2.5 generates notably low

SWE, we compare the snowfall, snowmelt, and snow

sublimation output of the CLSM-F2.5 and Noah-MP.

First, we use 35 years (1980–2014) of model output to

calculate the average annual cycle of each model to

ensure a reliable climatology for each model. The snow

models used in Noah-MP and CLSM-F2.5, albeit differ-

ent models, both incorporate extensive snowpack phys-

ics, including evaporation, sublimation, condensation,

radiation, precipitation as rain or snowfall, mechanical

FIG. 7. Comparison of 32-yr time series of GWSA (mm) between USGS wells (thin black line with open circles)

and the threemodels for six basins (purple line, CLM4.0; red line, Noah-MP; blue line, CLSM-F2.5). ThemodelAC

values given at the top of each frame correspond to model line color. The USGS values are unavailable before year

2002 (year 1992) for MARFC (NERFC).

TABLE 4. Coefficients of monthly AC between basinwide averaged SWEA derived from SNODAS and three models for 12 RFCs.

RFC name CBRFC CNRFC WGRFC MBRFC ABRFC NCRFC NWRFC MARFC SERFC NERFC LMRFC OHRFC

CLM4.0 0.70 0.79 0.60 0.61 0.20 0.80 0.85 0.66 0.17 0.73 0.20 0.45

Noah-MP 0.67 0.79 0.62 0.58 0.25 0.80 0.75 0.55 0.13 0.70 0.13 0.47

CLSM-F2.5 0.68 0.79 0.54 0.62 0.36 0.78 0.61 0.81 0.22 0.63 0.23 0.62
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compression, overflow, underflow, snowmelt, etc.

(Niu et al. 2011; Lynch-Stieglitz 1994; Stieglitz et al.

2001). Such complicated snowpack models make it

difficult to diagnose/identify SWE bias problems. In

the case of Noah-MP, Niu et al. (2011) compared the

Noah-MP to the earlier Noah, version 3 (with its single

bulk-layer snowpack model), to elucidate Noah-MP’s

advantage in simulating SWE. Major findings with

Noah-MP were that its multilayer snowpack structure

with the liquid water retention, optimal surface tur-

bulent exchange coefficient, and snow surface rough-

ness length (i.e., 0.002m) play an important role in

simulating SWE.

Here we introduce a bulk snowpack model concept to

guide a diagnosis of why CLSM-F2.5 produces notably

small SWE. In general terms, the temporal change of

SWE is the difference of the input snowfall (source)

minus both the snow sublimation/evaporation and the

snowmelt (sinks), which can be expressed as

dW
s

dt
5P

s
2M

s
2E

s
, (2)

where Ws denotes SWE, t is time, Es is the rate of

sublimation/evaporation, Ps is snowfall rate, and Ms is

snowmelt rate, which is controlled by the net energy

input to snowpack, according to

M
s
5

1

L
(Q

sw
1Q

lw
2Q

sh
2Q

le
2Q

g
) , (3)

where Qsw is net solar (shortwave) radiation, Qlw is net

longwave radiation,Qle is the latent heat flux,Qsh is the

sensible heat flux, Qg is ground heat flux, and L is the

latent heat of fusion.

We selected four RFCs where snowpack is important

in winter to compare in Fig. 10 the annual cycle of the

monthly values of the three terms on the right side of

Eq. (2) for both CLSM-F2.5 and Noah-MP. Compared

to Noah-MP, Fig. 10 shows that in CLSM-F2.5 the

sublimation sink is clearly larger, while its snowmelt

sink is simultaneously lower by roughly the same magni-

tude (except in theMBRFC.Note in Fig. 10 that the y-axis

range in Figs. 10i–l is one-fourth the range of Figs. 10a–h).

These similar magnitudes but opposite sign of the

FIG. 8.Mean annual cycle ofmonthlymean SWE (mm) for each of 12RFCs for the threemodels and SNODAS reanalysis calculated for

the 11-yr period of 2004–14 (thin black line with open circles, SNODAS; purple line, CLM4.0; red line, Noah-MP; blue line, CLSM-F2.5).

Note that the y-axis ranges from 0 to 120 in (a)–(d), from 0 to 40 in (e)–(h), and from 0 to 20 in (i)–(l).
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sublimation and snowmelt differences bring our at-

tention to snowfall as the likely major reason for the

large differences in SWE between CLSM-F2.5 and

Noah-MP. There is substantially lower snowfall in

CLSM-F2.5 than in Noah-MP (Figs. 10a–d) in three of

the four RFCs, as well as slightly lower snowfall in

the fourth RFC, despite the fact that both models

receive the same hourly forcing of total precipitation.

Thus, the two models partition total precipitation

differently into rainfall and snowfall, which we ex-

amine further next.

Noah-MP uses Jordan’s scheme (Jordan 1991) to

fractionally divide total precipitation into snowfall and

rainfall, while CLSM-F2.5 uses a simple 0.08C threshold

of air temperature to specify either all rainfall or all

snowfall. Of the input total precipitation, the fraction of

frozen precipitation Fice in Jordan’s scheme can vary

within the range of 0–1 as determined by

F
ice

5

8>><
>>:

�
0 T

air
. 2:58C

0:6 2:08,T
air
# 2:58C�

12 [54:622 0:2(T
air

1 273:15)] 0:08,T
air
# 2:08C

1:0 T
air
# 0:08C

. (4)

In CLSM-F2.5, the fraction of frozen precipitation is

specified in a binary fashion as

F
ice

5

�
0 T

air
. 0:08C

1 T
air

# 0:08C
, (5)

where Tair is the 2-m air temperature. Thus, in CLSM-

F2.5, all of the precipitation falls as rain unless the 2-m

air temperature is 0.08C or colder, whereas Noah-MP

applies Jordan’s scheme that utilizes a warmer 2.58C air

temperature criterion for the onset of at least some

frozen precipitation (which includes snow, snow mixed

with frozen rain, and frozen rain), leading to more solid

precipitation in the Noah-MP.

We now further consider the large difference in sub-

limation between CLSM-F2.5 and Noah-MP in all four

RFCs in Figs. 10i–l. As a point of reference, when the

modeled snowmelt (Figs. 10e–h) is scaled with each

model’s own mean annual snowfall (not shown), their

fractions (snowmelt/snowfall) are similar, suggesting

FIG. 9. Spatial distribution of 11-yr (2004–14) averaged February SWE (mm) derived from (a) SNODAS,

(b) CLM4.0, (c) Noah-MP, and (d) CLSM-F2.5.
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that the snowmelt differences between the two models

are of less importance than the large sublimation dif-

ferences in explaining the large differences in SWE.

The sublimation/evaporation over a snow surface can

be simply represented by the following bulk transfer

formula:

E
s
5F

sc
C

h
U(q

s
*2q

0
) , (6)

where Fsc is the snow cover fraction associated with

SWE and snow density, U is mean wind speed at 10-m

height, Ch is the surface exchange coefficient, qs* is the

surface saturated specific humidity, and q0 is the atmo-

spheric specific humidity at 2-m height. The surface

exchange coefficients are calculated as functions of snow

surface roughness and an atmospheric stability param-

eter, which is the Monin–Obukhov length in Noah-MP

and the bulk Richardson number in CLSM-F2.5. Given

that the input U and q0 are the same in both models, and

given that the snow cover fractionwill be close to 1 in both

models when SWE is nontrivial, the major difference in

sublimation between CLSM-F2.5 and Noah-MP must

arise from their differences in Ch and qs*, which we leave

for a future study.

d. Evaluation of modeled SMCA using NASMD

Last, the third water storage component we evaluate

is soil moisture. Like groundwater storage observations,

soil moisture measurements at the deeper depths are

difficult to obtain. Therefore, evaluating modeled soil

moisture is a very challenging task. Although the

NASMDproject compiledmore than 1800 stations from

30 soil moisture measurement networks across the

United States, there are few stations that measure soil

moisture below the 2-m soil depth, as most stations

measure soil moisture near the land surface (Quiring

et al. 2016). Furthermore, many stations located in

mountainous/cold regions (e.g., SNOTEL network)

have over 70% missing records and/or have erroneous

records for most of the cold season (September–May),

when frozen soil may lead to instrument malfunctions

(Xia et al. 2015c). We use the three criteria to select soil

FIG. 10. Mean annual cycle of monthly mean snowfall, snowmelt, and sublimation (mm) for four selected RFCs for CLSM-F2.5 (blue

line) and Noah-MP (red line) calculated from 35-yr (1980–2014) monthly model output. Note that the y-axis is from 0 to 60mm in

(a)–(h) and from 0 to 15mm in (i)–(l).
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moisture measurement stations (Xia et al. 2015a,c) as

follows. First, there are at least 10 years of observations;

second, the observations span at least a complete year;

and third, the depth to the soilmeasurement is at least 1m

or deeper. Based on these criteria, we selected the four

regions of Alabama, Illinois, Oklahoma, and western

Texas (Table 3).

As all three models and the four regions mentioned

above contain the top 1-m soil moisture, we used the 195

sites given in Table 3 and plotted in Fig. 2 to evaluate the

modeled soil moisture. To minimize the effect of scale

incompatibility problems on our soil moisture evalua-

tion (Entin et al. 2000; Robock et al. 2003; Fan et al.

2006; Xia et al. 2014), we used spatial averages for both

modeled and observed soil moisture. Spatially averaged

soil moisture anomalies from NASMD and the three

models are shown in Fig. 11 for each of the four regions

mentioned above. Overall, the models reasonably cap-

ture monthly variability in the observed soil moisture

anomaly in the four regions, in particular Oklahoma and

Illinois, while the amplitude is smaller than the observa-

tions in Alabama and western Texas, where the models

tend to underestimate the larger amplitude anomalies of

the several wettest and driest periods. The anomaly cor-

relation coefficients (ACCs) are relatively high for all

models and regions (.0.66) except for CLM4.0 in Ala-

bama, which shows a very low anomaly correlation. For

the larger regions such as the four quadrants of theUnited

States, Cai et al. (2014b) used 121 stations from the Soil

and Climate Analysis Network (SCAN) to evaluate the

top 1-m soil moisture simulated from CLM4.0 and

Noah-MP. The results in Fig. 11 are in good agreement

with their study. Additionally, in our study here, all

three models underestimate SMCA temporal variability

(Fig. 5d) and exhibit similar moderate errors (Fig. 6d) in

all four regions.

We recognize that this evaluation is limited in the

case of CLM4.0 and Noah-MP, which have total soil

column depths of 3.8 and 2.0m, respectively. However,

only one of the four regions (Illinois) has a meaningful

number of soil moisture observations below 1m. For

the sake of brevity, we leave evaluation of deeper soil

moisture for a future study, for which more widespread

observations of deeper soil moisture may become

available.

5. Analysis of relative contribution of different
water storage components

Although terrestrial water storage anomalies from the

three models are relatively similar and comparable to

GRACE TWSA for the 12 RFCs (see section 4a), their

individual components are quite different. Comparison

and evaluation of groundwater storage and SWE have

shown large intermodel differences. Although the top

1-m soil moisture does not show large differences be-

tween models, the model SMCAs in the total soil column

have large differences because of different soil depths; as

expected, CLM4.0 has the highest amplitude, followed by

Noah-MP and CLSM-F2.5 (Fig. 6d). An analysis for

mean monthly variability and interannual variability can

reveal more about the relative contribution of each

component to the terrestrialwater storage by eachmodel.

Thus, we calculate the mean annual cycle and annual

mean anomalies for the 35-yr (1980–2014) monthly

anomalies at each RFC. The relative contribution from

FIG. 11. Comparison of multiyear (from 11 to 20 years) time series of top 1-m monthly mean SMCA (mm)

spatially averaged over the NASMD sites for each of four regions from the NASMD observations (thin black line)

and the three models, along with the model AC values (purple line, CLM4.0; red line, Noah-MP; blue line, CLSM-

F2.5). The number of NASMD sites averaged in each region is listed in Table 3.
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the mean annual cycle RCmonthly and interannual vari-

ability RCinterann is calculated as

RC
monthly

5
s
i

s
T

and (7a)

RC
interann

5
d
i

d
T

, (7b)

where si is the standard deviation of themonthly anomaly

of the ith water storage component and sT is the standard

deviation of the monthly anomaly of the terrestrial water

storage, both calculated with respect to the 35-yr mean

seasonal cycle. We also calculate the standard deviation

for the annual anomaly of the ith water component di and

the standard deviation of the annual anomaly of the ter-

restrial water storage dT , both calculated with respect to

their 35-yr (1980–2014) average value.

The relative contributions of the three storage com-

ponents (SMCA, SWEA, and GWSA) are normalized

to sum to one and plotted on a ternary diagram for the

mean monthly variability (Figs. 12a–c) and interannual

variability (Figs. 12d–f). The diagram has three apexes

representing the three components, and the distance

from each data point to each apex reflects the proportion

of that component within the TWSA. For the mean

monthly variability (Figs. 12a–c), the major contributor

to TWSA is SMCA for CLM4.0 and Noah-MP and

GWSA for CLSM-F2.5. When CLM4.0 is compared

with Noah-MP, SMCA contributes somewhat more and

GWSA contributes somewhat less, as its deeper soil

layers yield larger SMCA amplitude and weaker GWSA

amplitude. The small SWEA contribution to TWSA

apparent in CLSM-F2.5 is due to its low SWE simula-

tions, as expected.

The relative contribution of GWSA to TWSA in-

creases for all three models when interannual variability

is considered (Figs. 12d–f), particularly for CLM4.0. As

groundwater storage has long memory and large in-

terannual variability, its contribution becomes larger

when compared to its contribution to the monthly var-

iability. This is consistent with the earlier study of

Güntner et al. (2007). In CLSM-F2.5, the contributions

to interannual variability from SWEA and SMCA be-

come much smaller compared to their contributions to

monthly variability, due in part to the shallower soil

(1m) in CLSM-F2.5.

Studies using in situ observations in Illinois and Okla-

homa (Swenson et al. 2006, 2008) showed that SMCAand

GWSA have a similar magnitude and amplitude. The

difference between our result and that analysis is caused

by model structure (e.g., soil layer depth) and model

simulation errors (e.g., SWE and groundwater storage),

which are usually closely related. These issues highlight

the need to improve model physics and to establish net-

works of observations for all water storage components

(e.g., soil moisture, wells, and SWE) to benefit model

development.

6. Discussion

Overall results show that our model skills in simulat-

ing groundwater are very limited in most regions within

the United States without more work on 1) a better

understanding of the interplay betweenmodel structure,

model parameters, and model setup; 2) a better un-

derstanding of groundwater dynamics such as the impact

of soil depth and aquifer depth and lateral connectivity

between the grid cells; and 3) quantifying the effects of

soil water, surface runoff, and baseflow recharge on

groundwater. The intermodel differences of groundwa-

ter storage are quite large, in particular the different

anomaly amplitudes generated by the three models.

Persistence in TWSA can be quantified by the auto-

correlation of theACC. Figure 13 shows theACC values

observed from GRACE and simulated from the three

models at four RFCs as a function of the starting month

and target (lag) month. For the four RFCs of CBRFC,

MBRFC, SERFC, andOHRFC, the first two are located

in drier regions and the second two are located in wetter

regions based on the aridity index (ratio of mean annual

precipitation to potential evapotranspiration) as used in

Sankarasubramanian and Vogel (2002). Overall, the

model results agree reasonably well with observations

in their cyclic phases. For the observations, a signifi-

cant lag correlation at the 95% confidence level per-

sists 1–6 months depending on different RFCs and

months [Fig. 13 (top)]. Generally, CLM4.0 has the

highest persistence when compared with the other two

models at all four RFCs. In the relatively dry CBRFCand

MBRFC, CLM4.0 is rather close to the observations,

while Noah-MP and CLSM-F2.5 both underestimate

the persistence in CBRFC. In the wetter SERFC and

OHRFC, CLSM-F2.5 is relatively close to the observed,

while Noah-MP still exhibits underestimation. A stronger

persistence suggests that a dry or wet event can take

a longer time to recover to its normal condition. This

means that a drought event represented by TWSA in

CLM4.0 (Noah-MP) may persist longer (shorter) than

expected from the observation (GRACE), indicating a

longer (shorter) duration and later (earlier) termination

of a given drought event. Given these differences, when

TWSA is used tomonitor drought events, this would have

important implications for interpretation and utilization

of the model simulations. A companion analysis of the

persistence of the simulated SMCA and GWSA storage

components in Fig. 14 shows that CLM4.0 has the largest
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ACC values for both SMCAandGWSAwhen compared

with the other two models. For Noah-MP and CLSM-

F2.5, the ACC values are comparable for SMCA while

the CLSM-F2.5 has the smaller ACC values for GWSA.

We point out here that besides the assessment of

TWSA, SWEA, SMCA, andGWSA in this present paper,

we have completed important companion evaluations of

monthly streamflow and evapotranspiration against ob-

servations for two of these three models (Cai et al. 2014b;

Xia et al. 2016). The observed streamflow from 981USGS

small- tomedium-sized basins (,10000km2)were used to

validate CLM4.0, Noah-MP, Noah, and VIC. The latter

two models are being used in the current operational

NLDAS. The results showed that Noah-MP and VIC

have larger AC values and smaller biases when compared

to CLM4.0 and the older Noah model (Cai et al. 2014b).

However, overall results were comparable for the four

models. CLSM-F2.5 and theMosaic model (which is used

in the current operational NLDAS) were also evaluated

against monthly gridded USGS total runoff and gridded

FLUXNETevapotranspiration generated from Jung et al.

(2009) at 12 RFCs (Xia et al. 2016). The results showed

that CLSM-F2.5 has much smaller (larger) total runoff

(evapotranspiration) when compared to the observations

and theMosaicmodel. This problem is being addressed in

the NLDAS Science Test bed. This ongoing research

work will help our NLDAS team to decide if the Mosaic

model will be replaced by CLSM-F2.5 in the next-

generation operational NLDAS.

7. Conclusions

This paper assessed the total (terrestrial) water stor-

age components of three advanced LSMs (CLM4.0,

FIG. 12. Ternary plot showing the relative contributions of the three water storage terms (SMCA, GWSA, and

SWEA) calculated from 35-yr (1980–2014)model output for the 12RFCswithin theCONUS. The storage terms for

each basin were normalized to the sum of one. (a)–(c) Mean monthly variability and (d)–(f) interannual variability

are shown.
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Noah-MP, andCLSM-F2.5). The validation of themonthly

TWSA against GRACE-based observations for 12 RFCs

showed that all three LSMs capture the broad features of

satellite-observed TWSA variations, such as dry and wet

events, although the LSMs’ simulation skill varies from

model to model and basin to basin. The modeled mean

annual cycle of TWSA agrees rather well with GRACE

observations for almost all RFCs.

The comparison of modeled groundwater storage

with USGS well observations shows that overall simu-

lation skill (anomaly correlation) is consistent with

previous studies (Li and Rodell 2015; Cai et al. 2014a),

although CLM4.0 fails to capture the GWSA variation

for the NERFC. All models have a low anomaly corre-

lation in the combined AB-LMRFC basin when com-

pared to the other basins, likely due to the deeper in situ

wells and drier climate, which makes it harder for the

models to capture groundwater response time. Other

factors such as irrigation/pumping (Leng et al. 2014) that

are not considered by all three models may also play a

role but cannot be verified at this time.

However, in contrast to temporal variability ofmonthly

GWSA, the magnitudes of monthly GWSA have large

intermodel differences in all six basins evaluated. In

general, CLM4.0 and Noah-MP have lower amplitudes

of monthly GWSA and CLSM-F2.5 has higher ampli-

tudes when compared to the USGS observations. The

most likely reason is that different model structures

(soil layer depth and unconfined aquifer depth) lead to

these differences. For instance, CLM4.0 has deeper soil

layer that may lead to higher soil moisture variability

than in the other models such as CLSM-F2.5.

An evaluation of modeled SWE against SNODAS

products shows that Noah-MP is the closest to SNODAS,

followed by CLM4.0 and CLSM-F2.5. However,

CLSM-F2.5 largely underestimates the reference SWE

when compared to SNODAS.Amajor reason is the large

sublimation rates of CLSM-F2.5, similar to those found in

the earlier Noah LSM versions preceding the Noah-MP

(Slater et al. 2007; Livneh et al. 2010). In addition, the

colder air temperature threshold used in CLSM-F2.5 to

partition the input of total precipitation into snowfall

and rainfall is a major factor in the low bias of SWE in

CLSM-F2.5.

The soil moisture evaluation in this study is somewhat

narrow in its scope. Specifically, although the NASMD

collected over 1800 stations across the United States,

only 195 stations are used here owing to three criteria we

applied for choosing validating soil moisture observa-

tions. The resulting validation of the LSMs against the

observations of the top 1-m soil moisture shows that all

models can reasonably capture soil moisture anomalies

such as dry and wet events with a relatively high skill.

There are large differences among the three LSMs in the

amplitude of the soil moisture anomalies in Alabama

and western Texas, while all three LSMs exhibit better

FIG. 13. Seasonal dependence of observed and simulated TWSA persistence (month to month autocorrelation) for 2003–14 over the

four RFCs (CBRFC,MBRFC, SERFC, and OHRFC). Initial month is along the x axis, and the lag to the target month is along the y axis.

Observations fromGRACE and three models (CLM4.0, Noah-MP, and CLSM-F2.5) are shown from top to bottom, and the results from

the four RFCS are shown from left to right.
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performance in Oklahoma and Illinois. However, be-

cause of a lack of deeper soil moisture measurements, a

comprehensive evaluation is still lacking and further

validation is needed when such measurements become

available.

We presented an analysis of the relative contribution of

individual water storage components anomaly to TWSA.

Over the 12 RCFs over the CONUS, soil moisture is a

major contributor to TWSA for CLM4.0 and Noah-MP,

while groundwater dominates TWSA in CLSM-F2.5. We

emphasize that such an analysis is preliminary because of

quite different model structures (e.g., different soil layer

numbers and depth and aquifer depth), model de-

ficiencies and errors (e.g., low SWE simulation in CLSM-

F2.5), and individual water component simulation errors.

However, such large intermodel differences suggest that

further investigation is needed.

Based on this study, we recommend future work in the

following areas: 1) scientific assessment of model designs

such as soil layer thicknesses and water-table depth, in-

teraction between groundwater and surface water, and

groundwater response time to precipitation; 2) improved

model parameters and calibration techniques that are

suitable for large-scale modeling; 3) addition of other

realistic physical processes such as irrigation/pumping

and surface water storage (ponds, lakes, rivers, and wet-

lands); and 4) additional networks of in situ and satellite-

based observations to facilitate model improvements.

As mentioned in our introduction, there has been

quite a bit of work on the topic of land surface models

versus GRACE comparisons. Some of this work may

reach slightly different conclusions than those presented

here. For example, van Dijk et al. (2014) indicated that

land surface models can reasonably capture interannual

trends in terrestrial water storage. For the most part, this

conclusion is consistent with ours. The three models used

in this study capture TWSA reasonably well when com-

paredwithGRACETWSA.However, for each individual

component, different models show different perfor-

mances. In particular for GWSA, the simulation skills are

very limited for all three models based on our preliminary

evaluation.Asmorewell data become available regionally

and globally, a further validation for these threemodels as

well as the other models with a groundwater module can

reach more robust conclusions in the future.
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